Paste: playoffmatrix
Author: | Rex |
Mode: | ml |
Date: | Thu, 11 Jun 2009 19:10:22 |
Plain Text |
% unplayo
% complete unplay for ayo
% along with payoff matrices for each possibility
% by Rex Ford
% James Madison University
% Collecting information
function unplayo
% calculates the number of stones obtained
% by making a certain choice on a board
function [score,board] = advantage(board,choice)
number_there=board(choice);
board(choice)=0;
pos=choice;
for x=1:number_there
pos=mod(pos,length(board))+1;
if(pos==choice)
pos=mod(pos,length(board))+1;
end
board(pos)=board(pos)+1;
end
% now, we must steal!
score=0;
while((board(pos)==2 || board(pos)==3) && ~same_side(board,choice,pos))
score=score+board(pos);
board(pos)=0;
pos=pos-1;
if(pos==0)
pos=length(board);
end
end
end
% calculates the payoff matrix
% for a given board
function pom(board)
n=length(board)/2;
fprintf('[\n');
for b=1:n
[p,board2]=advantage(board,b);
for k=1:n
q=advantage(board2,k+n);
fprintf('(%i,%i) ',p,q);
end
fprintf('\n');
end
fprintf(']\n');
end
function skip=find_skip(state)
% finding the number we are skipping
skip=1;
while(state(skip)~=0 && skip<3)
skip=skip+1;
end
end
function [fin_state,choice] = unplay_wrapping(state,start_pos,wraps)
pos=start_pos;
collection=0;
% finding the lowest value that isn't the skip bin
skip=find_skip(state);
while(state(pos)>0 || wraps>0)
if(pos==skip && wraps>0)
wraps=wraps-1;
if(pos>1)
pos=pos-1;
else
pos=length(state);
end
elseif(pos~=skip)
state(pos)=state(pos)-1;
collection=collection+1;
if(pos>1)
pos=pos-1;
else
pos=length(state);
end
end
end
state(pos)=collection;
fin_state=state;
choice=pos;
end
function [fin_states,choices] = unplay(state,start_pos)
fin_states=zeros(1,length(state));
choices=zeros(1,1);
skip=find_skip(state);
% start 'lowest' on a non-zero
lowest=1;
while(state(lowest)==0)
lowest=lowest+1;
end
%set 'lowest' to the index of the min
for q=1:length(state)
if(state(q)~=0 && state(q) < state(lowest) && q~=skip)
lowest=q;
end
end
for wraps=0:state(lowest)
[fin_states(wraps+1,:),choices(wraps+1,1)] = unplay_wrapping(state,start_pos,wraps);
end
end
% tells if a position is on 'my' side
function is_it = my_side(state,x)
is_it=same_side(state,1,x);
end
% are these two positions on the same side?
function is_it =same_side(state,x,y)
is_it=false;
n=length(state)/2;
if(x>n && y>n)
is_it=true;
end
if(x<=n && y<=n)
is_it=true;
end
end
function even=is_even(state)
even=true;
for x=1:length(state)-1
even=even && (state(x)==state(x+1));
end
end
function [good_answers,good_choices]=filter_results(answers,choices,state)
x=1;
[the_length,the_width]=size(answers);
while(x<=the_length)
the_min = min(answers(x,:));
the_right_min = min(answers(x,floor(the_width/2)+1:the_width));
test_board=answers(x,:);
[s,test_result]=advantage(test_board,choices(x,:));
if(the_min<0 ||(the_right_min>0 && is_even(answers(x,:))==false ) || choices(x)>the_width/2 || isequal(test_result,state)==false)
answers(x,:)=[];
choices(x,:)=[];
x=x-1;
[the_length,the_width]=size(answers);
end
x=x+1;
end
good_answers=answers;
good_choices=choices;
end
function amount=zero_length(state,x)
k=0;
while(x-k>length(state)/2 && state(x-k)==0)
k=k+1;
end
amount=k;
end
function the_array=to_bin_array(x,width)
bin=dec2bin(x);
[bin_length,bin_width]=size(bin);
the_array=zeros(1,width);
for idx=1:bin_width
the_array(idx)=bin(bin_width-idx+1)-48;
end
end
%% Here is the beginning of the actual program:
bins=input('how many bins? ');
while(mod(bins,2)~=0)
bins=input('you must enter an even number. ');
end
state=zeros(1,bins);
for i=1:bins
fprintf('bin %i: ',i);
state(i)=input('how many? ');
end
state
% Here is the meat:
answers=zeros(1,length(state));
choices=zeros(1,1);
original_state=state;
for j=length(state):-1:1
if(state(j)==0 && same_side(state,1,j)==false)
num_zeros=zero_length(state,j);
% for every combination of 2's and 3's in this
% strand of zeros that is num_zeros long
for b=0:2^(num_zeros)-1
my_array=to_bin_array(b,num_zeros);
my_array=my_array+ones(size(my_array))*2;
state(j-num_zeros+1:j)=my_array(1,1:num_zeros);
[new_answers,new_choices]=unplay(state,j);
answers=[answers;new_answers];
choices=[choices;new_choices];
state=original_state;
end
elseif(state(j)~=0)
[new_answers,new_choices]=unplay(state,j);
answers=[answers;new_answers];
choices=[choices;new_choices];
state=original_state;
end
end
answers(1,:)=[];
choices(1,:)=[];
[answers,choices]=filter_results(answers,choices,state);
% at this point, answers contains all of the possible previous states
% and choices contains all of the correlating bins sown
for t=1:size(answers)
fprintf('state %i :',t);
answers(t,:)
choice=choices(t)
pom(answers(t,:));
end
end
New Annotation